skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chaturvedi, Akshat S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During our spectroscopic survey of central stars of faint planetary nebulae (PNe), we found that the nucleus of Abell 57 exhibits strong nebular emission lines. Using synthetic narrowband images, we show that the emission arises from an unresolved compact emission knot (CEK) coinciding with the hot (90,000 K) central star. Thus Abell 57 belongs to the rare class of “EGB 6-type” PNe, characterized by dense emission cores. Photometric data show that the nucleus exhibits a near-infrared excess, due to a dusty companion body with the luminosity of an M0 dwarf but a temperature of ∼1800 K. Emission-line analysis reveals that the CEK is remarkably dense (electron density ∼ 1.6 × 10^7 cm^{−3}), and has a radius of only ∼4.5 au. The CEK suffers considerably more reddening than the central star, which itself is more reddened than the surrounding PN. These puzzles may suggest an interaction between the knot and central star; however, Hubble Space Telescope imaging of EGB 6 itself shows that its CEK lies more than ∼125 au from the PN nucleus. We discuss a scenario in which a portion of the asymptotic giant branch wind that created the PN was captured into a dust cloud around a distant stellar companion; this cloud has survived to the present epoch, and has an atmosphere photoionized by radiation from the hot central star. However, in this picture EGB 6-type nuclei should be relatively common, yet they are actually extremely rare; thus they may arise from a different transitory phenomenon. We suggest future observations of Abell 57 that may help unravel its mysteries. 
    more » « less